منابع مشابه
On defect groups for generalized blocks of the symmetric group
In a paper of 2003, B. Külshammer, J. B. Olsson and G. R. Robinson defined l-blocks for the symmetric groups, where l > 1 is an arbitrary integer. In this paper, we give a definition for the defect group of the principal l-block. We then check that, in the Abelian case, we have an analogue of one of M. Broué’s conjectures.
متن کاملOn generalized blocks for alternating groups
In a recent paper Külshammer, Olsson, Robinson gave a danalogue for the Nakayama conjecture for symmetric groups where d ≥ 2 is an arbitrary integer. We prove that there is a natural d-analogue of the Nakayama conjecture for alternating groups whenever d is 2 or an arbitrary odd integer greater than 1. This generalizes an old result of Kerber.
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones mathematicae
سال: 2003
ISSN: 0020-9910,1432-1297
DOI: 10.1007/s00222-002-0258-3