Generalized blocks for symmetric groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On defect groups for generalized blocks of the symmetric group

In a paper of 2003, B. Külshammer, J. B. Olsson and G. R. Robinson defined l-blocks for the symmetric groups, where l > 1 is an arbitrary integer. In this paper, we give a definition for the defect group of the principal l-block. We then check that, in the Abelian case, we have an analogue of one of M. Broué’s conjectures.

متن کامل

On generalized blocks for alternating groups

In a recent paper Külshammer, Olsson, Robinson gave a danalogue for the Nakayama conjecture for symmetric groups where d ≥ 2 is an arbitrary integer. We prove that there is a natural d-analogue of the Nakayama conjecture for alternating groups whenever d is 2 or an arbitrary odd integer greater than 1. This generalizes an old result of Kerber.

متن کامل

Generalized Symmetric Berwald Spaces

In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones mathematicae

سال: 2003

ISSN: 0020-9910,1432-1297

DOI: 10.1007/s00222-002-0258-3